Главная » Литература » Технология строительного производства » Патон Б.Е. - Технология электрической сварки металлов и сплавов плавлением

Патон Б.Е. - Технология электрической сварки металлов и сплавов плавлением


Технология электрической сварки металлов и сплавов плавлением. Под ред. акад Б. Е. Патона М., «Машиностроение», 1974. 768 с.

В книге приведены классификация сварочных процессов и сравнительная характеристика различных способов сварки. Рассмотрены вопросы свариваемости основного металла и причины возникновения дефектов в сварных соединениях. Даны сведения о сварочных материалах, оборудовании и режимах, применяемых при сварке и наплавке разнообразных конструкций из углеродистых, низколегированных и легированных сталей, легких металлов и сплавов Даны сведения о способах неразрушающего контроля качества сварных соединений

Книга предназначена для научных и инженерно- технических работников предприятий и научно-исследовательских организаций 171 табл.; 442 ил.; список лит 35 назв.в предлагаемой вниманию читателей книге рассмотрен один из наиболее актуальных вопросов сварочной науки и техники — технология электрической сварки металлов и сплавов плавлением.

В работе над книгой участвовало более тридцати специалистов, что обусловлено широким кругом рассматриваемых вопросов.

Введение

Сварка —• один из наиболее широко распространенных технологических процессов. К сварке относятся собственно сварка, наплавка, сваркопайка, сварка, склеивание, пайка, напыление и некоторые другие операции.

С помощью сварки соединяют между собой различные металлы, их сплавы, некоторые керамические материалы, пластмассы, стекла и разнородные материалы. Основное применение находит сварка металлов и их сплавов при сооружении новых конструкций, ремонте различных изделий, машин и механизмов, создании двухслойных материалов. Сваривать можно металлы любой толщины. Прочность сварного соединения в большинстве случаев не уступает прочности целого металла.

Сварку можно выполнять на земле и под водой в любых пространственных положениях. Возможность выполнения сварки в космосе была доказана советскими летчиками-космонавтами Т. С. Шониным и В. Н. Кубасовым. На борту космического корабля «Союз-6» они впервые осуществили сварку коррозионностойкой стали и титанового сплава в условиях космического вакуума и невесомости.

Соединение при сварке достигается за счет возникновения атомно-молекулярных связей между элементарными частицами соединяемых тел. Сближению атомов мешают неровности поверхностей в местах, где намечено осуществить соединение деталей, и наличие на них загрязнений в виде окислов, органических пленок и адсорбированных газов.

В зависимости от методов, примененных для устранения причин, мешающих достижению прочного соединения, все существующие разновидности cварки (а их насчитывается около 70) можно отнести к трем основным группам —¦ сварка давлением (сварка в твердом состоянии), сварка плавлением (сварка в жидком состоянии) и сварка плавлением и давлением (сварка в жидкотвердом состоянии).

При сварке плавлением соединение деталей достигается путем локального расплавления металла свариваемых элементов — основного металла — по кромкам в месте их соприкосновения или основного и дополнительного металлов и смачивания твердого металла жидким. Расплавленный основной или основной и дополнительный металлы самопроизвольно (спонтанно) без приложения внешнего усилия сливаются, образуя общую так называемую сварочную ванну. По мере удаления источника нагрева происходит затвердевание—кристаллизация металла сварочной ванны и формирование шва, соединяющего детали в одно целое. Металл шва при всех видах сварки плавлением имеет литую структуру.

Для расплавления металла используют мощные источники нагрева. В зависимости от характера источника теплоты различают электрическую и химическую сварку плавлением: при электрической сварке начальным источником теплоты служит электрический ток, при химической в качестве источника теплоты используют экзотермическую реакцию горения газов (газовая сварка) или порошкообразной горючей смеси (термитная сварка).

В данной книге освещены вопросы, касающиеся только электрической сварки плавлением металлов и их сплавов. Впервые мысль о возможности практического применения «электрических искр» для плавления металлов высказал в 1753 г. академик Российской Академии наук Г. Р. Рихман, выполнивший ряд исследований атмосферного электричества. Практической проверке такого мнения способствовало создание итальянским ученым А. Вольта гальванического элемента (вольтова столба). В 1802 г. профессор Санкт-Петербургской военно-хирургической академии В. В. Петров, используя мощный гальванический элемент, открыл явление электрической дуги. Он также указал возможные области ее практического применения. Независимо от В. В. Петрова, но несколько позже (1809 г.), электрическую дугу получил английский физик Г. Деви.

Для практического осуществления электрической сварки металлов потребовались многие годы совместных усилий физиков и техников, направленных на создание электрических генераторов. Важную роль сыграли открытия и изобретения в области магнетизма и электричества.

Первые электромагнитные генераторы были созданы в 70-х годах XIX в. До этого имели место лишь отдельные попытки осуществления электрической сварки металлов с помощью гальванических элементов. Так, в 1849 г. американец К. Стэт получил английский патент на соединение металлов с помощью электричества. Однако этот патент не был реализован на практике. Глубокая разработка вопросов электрической сварки металлов началась позже.

В 1882 г. русский изобретатель Н. Н. Бенардос предложил способ прочного соединения и разъединения металлов непосредственным действием электрического тока. Он практически осуществил способы сварки и резки металлов электрической дугой угольным электродом. Ему также принадлежит много других важных изобретений в области сварки (спиральношовные трубы, порошковая проволока и др.). Электрическая дуговая сварка получила дальнейшее развитие в работах Н. Г. Славянова. В способе Н. Г. Славянова (1888 г.) в отличие от способа Н. Н. Бенардоса металлический стержень одновременно является и электродом, и присадочным металлом. Н. Г. Славянов разработал технологические и металлургические основы электродуговой сварки. Он применил флюс для защиты металла сварочной ванны от воздуха, предложил способы наплавки и горячей сварки чугуна, организовал первый в мире электросварочный цех. Н. Н. Бенардос и Н. Г. Славянов положили начало автоматизации сварочных процессов, создав первые устройства для механизированной подачи электрода в дугу.

Дальнейшее развитие электрической дуговой сварки несколько замедлилось в связи с конкуренцией газовой сварки кислородноацетиленовым пламенем. В начале XX в. этот способ обеспечивал более высокое качество сварных швов, чем дуговая сварка голым электродом.

Положение изменилось, когда в 1907 г. шведский инженер О. Кьельберг применил металлические электроды с нанесенным на их поверхность покрытием. Это покрытие предохраняло металл шва от вредного воздействия воздуха (окисления и азотирования) и стабилизировало горение дуги. Применение покрытых электродов обеспечило резкое повышение качества сварных соединений. Ручная электродуговая сварка плавящимся электродом начала широко применяться на заводах США, Англии, Австро-Венгрии и других стран.

Отсталая промышленность дореволюционной России так и не смогла в должном объеме использовать дуговую сварку. Промышленное применение этого вида сварки в нашей стране началось только после победы Великой Октябрьской социалистической революции. Уже в начале 20-х годов под руководством В. П. Вологдина были изготовлены сварные котлы, а несколько позже — суда и другие ответственные конструкции. В конце первой четверти XX в. ручная дуговая сварка плавящимся электродом стала основным способом сварки в нашей стране и во всем мире.

Все время развиваясь и совершенствуясь, ручная дуговая сварка не утратила своего ведущего положения и в настоящее время.

Освоена сварка специальных сталей, цветных и легких металлов и других материалов, и для этих условий достигнута равнопрочность сварного соединения с основным металлом. Наряду с внедрением и совершенствованием ручной дуговой сварки во всех странах проведены работы по изысканию новых способов защиты зоны дуги от окружающего воздуха и по механизации основных сварочных операций. Уже в начале 20-х годов в различных странах были созданы специальные механизмы — автоматы для сварки и наплавки плавящимся электродом с наносимыми на их поверхность или вводимыми внутрь стержня специальными веществами или же с окружающей дугу газовой защитой.

Однако эти автоматы не получили промышленного применения, так как обеспечивали лишь небольшое повышение производительности труда по сравнению с ручной сваркой. Новый этап в развитии механизированной дуговой сварки в нашей стране начался в конце 30-х годов, когда на основе идей, выдвинутых еще Н. Г. Славяновым, коллективом Института электросварки АН УССР под руководством академика АН УССР Евгения Оскаровича Патона был разработан новый способ сварки, получивший название — автоматическая сварка под флюсом. В середине 40-х годов сварка под флюсом была применена и для полуавтоматического процесса.

Сварка под флюсом за счет увеличения мощности сварочной дуги и надежной изоляции плавильного пространства от окружающего воздуха позволяет резко повысить производительность процесса, обеспечить стабильность качества сварного соединения, улучшить условия труда и получить значительную экономию материалов, электроэнергии и средств.

Высокое качество сварного соединения и равнопрочность его с основным металлом предопределяют применение сварки под флюсом при изготовлении конструкций и аппаратуры, работающих в условиях глубокого холода, высоких температур, сверхвысоких давлений, агрессивных жидких и газовых сред и нейтронного излучения. Способ используют для соединения большинства находящих промышленное применение металлов и сплавов.

Особенно широко сварка под флюсом применяется в Советском Союзе, который по техническому уровню развития и по глубине научной разработки основ этого способа сварки занимает ведущее положение. Возможности автоматической сварки под флюсом еще далеко не исчерпаны, и ^можно ожидать дальнейшего ее развития и совершенствования.

Способ сварки под флюсом за рубежом впервые появился в США (фирма Линде). Пути развития этого способа в зарубежных странах несколько отличались от отечественных. Различие в основном заключалось в конструкциях сварочных установок и в применяемых сварочных материалах.

в конце 40-х годов получил промышленное применение способ дуговой сварки в защитных газах. Газ для защиты зоны сварки впервые использовал американский ученый А. Александер еще в 1928 г. Однако в те годы этот способ сварки не нашел серьезного промышленного применения из-за сложности получения защитных газов. Положение изменилось после того как для защиты были использованы пригодные для массового применения газы (гелий и аргон в США, углекислый газ в СССР) и различные смеси газов.

Сварку неплавящимся (угольным) электродом в углекислом газе впервые осуществил Н. Г. Остапенко. Затем усилиями коллективов ЦНИИТМАШа, Института электросварки им. Е. О. Патона и ряда промышленных предприятий был разработан способ дуговой сварки в углекислом газе плавящимся электродом. Использование дешевых защитных газов, улучшение качества сварки и повышение производительности процесса обеспечили широкое применение этого способа главным образом при полуавтоматической сварке различных конструкций. Объем применения полуавтоматической сварки в защитных газах из года в год возрастает. Ее широко используют вместо ручной сварки покрытыми электродами н полуавтоматической сварки под флюсом.

Для полуавтоматической сварки находят применение также порошковая и активированная проволоки, не требующие дополнительной защиты. Интенсивные работы ведутся по исследованию и промышленному применению разновидности дугового процесса — так называемой сварки сжатой (плазменной) дугой. Серьезным достижением отечественной сварочной техники явилась разработка в 1949 г. принципиально нового вида электрической сварки плавлением, получившего название электрошлаковой сварки. Электрошлаковая сварка разработана сотрудниками Института электросварки им. Е. О Патона в содружестве с работниками заводов тяжелого машиностроения. Разработка этого вида сварки позволила успешно решить весьма важные для дальнейшего развития промышленности вопросы качественной и производительной сварки металла практически неограниченной толщины и механизации сварки вертикальных швов.

На основе электрошлакового процесса в Советском Союзе создан новый способ рафинирования металла, получивший название электрошлакового переплава. Развитие сварочной техники неразрывно связано с изысканием новых источников теплоты для плавления металла. Одним из таких источников является концентрированный поток электронов в вакууме, на основе которого в конце 50-х годов французскими учеными был создан новый вид сварки, получивший название электроннолучевого процесса. Электроннолучевая сварка находит достаточно широкое практическое применение при соединении тугоплавких химических активных металлов и сплавов и ряда специальных сталей. В последнее десятилетие для сварки начали применять оптические квантовые генераторы —¦ лазеры. В ближайшие годы можно ожидать дальнейших серьезных успехов в развитии и промышленном применении лучевых сварочных процессов.

Электрическая сварка плавлением достигла высокого уровня развития и стала ведущим технологическим процессом, позволяющим создавать рациональные конструкции для всех без исключения отраслей промышленности из любых практически применяющихся металлов и сплавов различной толщины. Технология электрической сварки плавлением строится на серьезной научной основе, использующей и обобщающей огромный опыт ученых, работников производства и научных коллективов — представителей различных стран и различных научных школ и направлений.

Большой вклад в развитие научных основ технологии электрической сварки металлов и сплавов плавлением внесли советские ученые в области сварки. К ним принадлежат созданный Е. О. Патоном коллектив Института электросварки им. Е. О. Патона, коллективы: МВТУ им. Н. Э. Баумана, ИМЕТа им. А. А. Байкова, ЦНИИТМАШа, ВНИИАВТОГЕНМАШа, ленинградская школа сварщиков, а также многочисленные кафедры сварки технических вузов страны.

Значительные успехи, достигнутые в развитии электрической сварки плавлением в нашей стране, стали возможными благодаря огромному вниманию, которое Коммунистическая партия и Советское правительство уделяли и уделяют этому вопросу.

Общие сведения об электрической сварке плавлением

§ 1-1. Схема процесса сварки

Сваркой называют технологический процесс получения неразъемных (сварных) соединений из металлов, их сплавов и других материалов (пластмасс, стекла) или разнородных материалов (стекла и металла и т. п.). В настоящей книге рассмотрены вопросы, касающиеся только сварки металлов и их сплавов.

Соединение, полученное при сварке, характеризуется непрерывной структурной связью и монолитностью строения, достигаемыми за счет образования атомно-молекулярных связей между элементарными частицами сопрягаемых деталей. Для того чтобы произошла сварка, нужно сблизить соединяемые элементы на расстояние порядка величины атомного радиуса (10""^ см). При этом между поверхностными атомами твердых тел становится возможным межатомное взаимодействие и происходит сопровождаемое диффузией химическое взаимодействие.

Неразъемное монолитное соединение, образуемое при сварке, называется сварным соединением. При сварке плавлением под сварным соединением понимают участок, включающий собственно шов, металл зоны термического влияния и основной металл, не претерпевший под влиянием сварки никаких изменений. Шов является литым сплавом основного и дополнительного металлов, а зона термического влияния представляет собой участок основного металла с измененными в результате сварки свойствами (рис. 1-1).

Сваркой плавлением можно соединять практически все используемые для изготовления конструкций металлы и сплавы любой толщины. Возможна сварка разнородных металлов и сплавов. В процессе изготовления конструкции с использованием сварки плавлением источник теплоты в большинстве случаев передвигается вдоль свариваемого изделия, что позволяет сваривать объекты с неограниченными размерами. Сварку плавлением, в том числе и электрическую, ранее называли автогенной — самопроизвольной сваркой. Затем этот термин начал применяться для обозначения кислородно-ацетиленовой сварки. Сейчас он почти не применяется.

При сварке плавлением металл в месте сварки доводится до жидкого состояния. Локальное расплавление основного металла осуществляется по кромкам соединяемых элементов. Сварка может осуществляться только за счет расплавления основного металла

(рис 1-2, а) или за счет расплавления основного и дополнительного металлов (рис. 1-2, б). В практике преимущественное применение находит второй вариант. Расплавленные основной или основной и дополнительный металлы самопроизвольно без приложения внешних сил сливаются в общую сварочную ванну, смачивающую оставшуюся твердой поверхность соединяемых элементов. При этом происходит сближение атомов металла сварочной ванны и основного металла до расстояния, при котором возникают атомно-молекулярные связи. В процессе расплавления металла устраняются неровности поверхности, органические пленки, адсорбированные газы, окислы и другие загрязнения, мешающие сближению атомов. Межатомному сцеплению способствует повышенная подвижность атомов, обусловленная высокой температурой расплавленного металла.

По мере удаления источника нагрева жидкий металл остывает и происходит его затвердевание—кристаллизация. Начинается она от частично оплавленных зерен основного металла, что приводит к образованию общих кристаллитов. После завершения кристаллизации сварочной ванны образуется монолитный, имеющий литую структуру шов, соединяющий в единое целое ранее разобщенные детали.

В процессе сварки наблюдаются испарение и окисление некоторых элементов, поглощение и растворение жидкой ванной газов. Происходят также изменения и в зоне термического влияния. Эти процессы обусловливают отличие металла шва и зоны термического влияния от основного металла. При сварке возникают деформации конструкции и создается поле остаточных напряжений, что может нарушить проектные ее размеры и форму и сказаться на прочности сварного соединения.

При сварке плавлением требуется локальный нагрев небольшого участка металла, окруженного со всех сторон значительным объемом холодного металла, до температуры, превосходящей температуру его плавления. Это приводит к необходимости использования для электрической сварки большинства металлов и сплавов источников нагрева, имеющих температуру не ниже 3000° С и тепловую мощность, достаточную для образования сварочной ванны.

При электрической сварке плавлением источником нагрева служит электрический ток. Наиболее широкое применение находит электродуговая, электрошлаковая и электроннолучевая сварка. В значительно меньшем объеме используется пока лазерная сварка. Однако масштабы ее применения с каждым годом увеличиваются.

При электрической дуговой сварке нагрев и плавление металла осуществляются энергией, выделяемой дуговым разрядом. При электрошлаковой сварке необходимая для сварки теплота получается при прохождении тока через шлаковую ванну, образуемую при расплавлении флюса. Нагрев и плавление металла при электроннолучевой сварке достигаются за счет интенсивной бомбардировки свариваемого металла быстродвижущимися электронами. При лазерной сварке необходимая для плавления металла теплота выделяется световым пучком, являющимся весьма концентрированным источником теплоты.

В настоящее время ведущее положение среди различных видов электрической сварки плавлением занимает электрическая дуговая сварка. Возможности этого вида сварки еще далеко не исчерпаны, и можно ожидать дальнейшего ее совершенствования и развития. К сварке плавлением относится и наплавка металлов, нашедшая широкое применение в промышленности. Наплавкой называют процесс нанесения слоя металла на доведенную до расплавления поверхность изделия. Цель наплавки сводится к восстановлению размеров детали после износа, устранению дефектов литья, поковок и проката или созданию на поверхности детали слоя металла, обладающего особыми свойствами (стойкость против износа или коррозии, жаропрочность и др.). В дальнейшем при изложении общих вопросов под термином «сварка» мы будем понимать как собственно сварку, т. е. соединение отдельных деталей, так и наплавку.

Сварка — технологический процесс, широко применяемый во всех отраслях народного хозяйства для изготовления новых и ремонта эксплуатируемых конструкций и механизмов. Преимущества сварных конструкций в настоящее время общепризнаны, Такие конструкции повсеместно применяют взамен литых, клепаных и кованых изделий. Эти преимущества сводятся к уменьшению расхода металла, снижению затрат труда, упрощению оборудования, сокращению сроков изготовления и увеличению съема продукции без увеличения производственных площадей. Значительно расширяются также возможности механизации основных технологических операций. Однако все преимущества сварки могут быть реализованы только при обеспечении необходимого качества сварных соединений, гарантирующих длительную и надежную работу их в условиях эксплуатации. Это достигается на основании глубокого изучения вопросов технологии сварки и установления связи ее с конструктивными формами и особенностями изготовляемой продукции.

...


Архивариус Типовые серии Норм. документы Литература Технол. карты Программы Серии в DWG, XLS